As the best-selling authors of Ace the Data Science Interview and creators of SQL interview platform DataLemur, we've read a TON of Data Science books over the years. Here's the absolute 13 best books for Data Scientists that want to take their career to the next level. While many of these books are directly about Data Science and Machine Learning, we also threw in some of our favorite business and product management books for Data Scientists. Let's face it: our field is insanely interdisciplinary, and as such, it's beneficial to read broadly.
The 3 best books to learn Data Science are Advancing Into Analytics for people completely new to data science, R for Data Science for a practical introduction to Data Science in R, and Data Science for Business for an introduction to how Data Science is applied to solve real-world business problems.
If you don’t have any programming experience, but are handy at Excel, Advancing Into Analytics is the perfect gentle introduction to using R & Python for analytics. By covering fundamental concepts in Excel first, and then showing how they directly translate into a programming language, this book eases you into data analytics making it the best book for total beginners.
For more Data Analytics suggestions (rather than Data Science), you should see our favorite 17 books for Data Analysts.
R for Data Science is the perfect hands-on introduction to Data Science. The book does a great job balancing implementation details in R while also giving you a big-picture understanding of the data science process, and best of all it's FREE for an online copy, but you can choose to buy it on Amazon here. One caveat: if you do have previous experience with programming, especially in Python, it’s best to skip R and just dive into the Python data analysis stack instead.
Data Science for Business is a great conceptual introduction to Data Analytics and Data Science. The authors do a great job showing the business applications of various techniques, as well as the meta-concerns Data Scientists need to be concerned with. However, it lacks practical exercises and code snippets, making it not a great hands-on book. As such, we recommend this book to people who need to be familiar with Data Science at a high-level, but don’t need to be responsible for implementing data science details in their day-to-day work.
The 3 best books for Data Scientists to learn Machine Learning are Intro to Statistical Learning for the hard-core theory behind ML, the Hundred-Page Machine Learning book for a quicker crash-course into the math and concepts behind ML, and Hands-On Machine Learning with Scikit-Learn and TensorFlow for a practical tutorial on building ML models.
Intro to Statistical Learning (& it's even harder cousin, Elements of Statistical Learning) are both free & amazing resources for learning machine learning theory. For Data Science & Machine Learning practitioners, it's never a waste of time to brush up on your fundamentals! While hailed as the bible of ML, be warned: it's challenging to read and most people give up after a few chapters! If you need a more compact intro, check out the next ML book suggestion.
For a lighter introduction to the fundamentals of machine learning, this 100 page book (well...137 pages but who's counting) strikes the right balance between enough math to explain the central ideas in ML, without overwhelming the reader.
True to its name, this book is the best hands-on introduction to Machine Learning. Hands-On Machine Learning is rich in concrete examples, and light on theory, making it the perfect read for someone who is already familiar with the fundamentals of Data Science and ML but is now hungry to tangibly apply what they know.
The 3 best books for Data Scientists who are trying to succeed in their career and land data science jobs are Ace the Data Science Interview for interview prep, the Data Science Handbook for career and life insights from top Data Scientists, and So Good They Can't Ignore You to help you more broadly design a successful career.
Ace the Data Science Interview is the best book to prepare for a Data Science Interview. It covers the most frequently-tested topics in data interviews like Probability, Statistics, Machine Learning, SQL query questions, Coding (Python), and Product Analytics. With 201 data science interview questions to practice with, this book is a must-read for those trying to land data jobs at FAANG, tech startups, or on Wall Street. It’s also a great book to prepare for Data Analyst and Machine Learning interviews too.
Of course, we wrote this Amazon Best-Seller, so we’re a tiny bit prejudiced!
If you're looking for the eBook of Ace the Data Science Interview, we're sorry to announce that there aren't any online PDF or Kindle downloads of Ace the Data Science Interview available. However, you'll find many of the SQL interview tips from the book on DataLemur's 6000-word guide to SQL interview prep. On DataLemur, you'll also find 100+ SQL Interview Questions from FAANG and plenty more Machine Learning Interview questions too!
You can also find 9 other Data Science Interview books which we recommend, which complement the material from Ace the Data Science Interview very nicely!
This light-read interviewed 25 leaders in Data Science - both Data Science thought leaders like DJ Patil, as well as Data Science practitioners who are leading the most innovative data teams at companies like Airbnb, Netflix, and Facebook. It has a mix of career advice for Data Scientists, perspectives on the field, and general life advice.
In this book, Cal Newport debunks the career advice of “follow your passion". Instead, he provides the evidence-based framework for finding work you’ll love. Newport’s big idea is that becoming excellent at a skill the world finds valuable is an ideal path towards career satisfaction and success. We recommend this book to anyone confused or frustrated about their current situation.